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T
he complex interactions and dynamic
changes of engineered nanomateri-
als in biological systems have hin-

dered the rapid development of bionano-
science.1�3 Colloidal nanoparticles are me-
tastable suspensions that are subject to
aggregation due to aging or changes in
media conditions such as pH and ionic
strength. The aggregation of engineered
nanomaterials in media is one of the most
problematic issues in biological studies of
nanomaterials, which diminishes any meaning
of careful characterization before in vitro or
in vivo doses.4,5 Another complication is the
adsorptionofbiomoleculesonto the surfacesof
nanoparticles forming so-called nanoparticle�
protein coronas that dynamically change in the
biological milieu.1,6�8 Further complication
arises from nanoparticle�cell membrane in-
teractions; once internalized, the nanoparti-
cles are exposed to totally different biological
environments.9,10 These complicated interac-
tions and dynamic changes of nanomaterials
make a meaningful characterization of the
nanoparticle surfaces properties in biological
systems difficult.
Careful study of the mechanisms of the

nanoparticle aggregation and protein cor-
ona formation processes suggests that the
surface adsorption energy of the nanopar-
ticles is the primary driving force behind all
of these complicated interactions and dy-
namic changes of nanomaterials within bio-
logical systems. The surface adsorption
energy is unique to the small size of nano-
particles with extremely high surface to
volume ratio, where the unsaturated surface
chemical bonds tend to adsorb other che-
micals or biomolecules to reduce their sur-
face energy.1,11 A biological surface adsorption
index (BSAI) was developed to characterize
the surface adsorption energy of nano-
materials under biologically relevant aqu-
eous conditions.12

The strategy of the BSAI approach is to
measure the surface adsorption forces in
idealized biological conditions, that is, a
system that has the same medium condi-
tions as in situ biological systems such as pH,
ionic strength, and biomolecules that do not
significantly interact with the surfaces of the
nanomaterials. Under such idealized biologi-
cal conditions, the surface adsorption proper-
ties can be measured using a set of probe
compounds with diverse physicochemical
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ABSTRACT

The biological surface adsorption index (BSAI) is a novel approach to characterize surface

adsorption energy of nanomaterials that is the primary force behind nanoparticle aggregation,

protein corona formation, and other complex interactions of nanomaterials within biological

systems. Five quantitative nanodescriptors were obtained to represent the surface adsorption

forces (hydrophobicity, hydrogen bond, polarity/polarizability, and lone-pair electrons) of the

nanomaterial interaction with biological components. We have mapped the surface adsorption

forces over 16 different nanomaterials. When the five-dimensional information of the

nanodescriptors was reduced to two dimensions, the 16 nanomaterials were classified into

distinct clusters according their surface adsorption properties. BSAI nanodescriptors are

intrinsic properties of nanomaterials useful for quantitative structure�activity relationship

(QSAR) model development. This is the first success in quantitative characterization of the

surface adsorption forces of nanomaterials in biological conditions, which could open a

quantitative avenue in predictive nanomedicine development, risk assessment, and safety

evaluation of nanomaterials.

KEYWORDS: engineered nanomaterials . surface adsorption . risk assessment .
nanotoxicology . nanomedicine . nanomaterial characterization
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properties to derive five nanodescriptors representing
the molecular forces of the nanomaterials interaction
with the biological components.12 The nanodescrip-
tors are intrinsic properties of the nanomaterials that
will not change in reversible adsorption processes12,13

and therefore can be used for quantitative structure
�activity relationship (QSAR) model development,
nanomedicine delivery, and risk assessment and safety
evaluation of nanomaterials.14,15

We havemapped the surface adsorption forces over
16 different nanomaterials. The data process for ob-
taining the nanodescriptors was briefly introduced
using multiwalled carbon nanotubes (MWCNT) with
diameters of 40 nm and carboxyl (�COOH) surface
derivatives as an example. The predictive model devel-
opment andmodel validation for a given nanomaterial
is described. The five-dimensional nanodescriptor in-
dex describing the five types of molecular interactive
forces was reduced to two-dimensional via principal
component analysis, which allows different nanoma-
terials to be clustered by their surface adsorption
properties. The potential applications and predictions
as well as considerations and limitations of the BSAI
approach are addressed.

RESULTS AND DISCUSSION

In this study, a set of 28 compounds with diverse
physicochemical properties were used as probe com-
pounds. The adsorption coefficients (k) of the probe
compounds onagivennanomaterial (e.g., MWCNT40nm-
COOH) were measured using a solid phase microextrac-
tion (SPME)-GC/MSmethod. The log kvaluesof theprobe
compounds and their solute descriptors [R, π, R, β, V] are
provided in the Supporting Information Table S1. The
solute descriptors of the probe compounds were ob-
tained from a database as described in the Methods
section. The correlation of log k with the solute descrip-
tors was established via multiple linear regression anal-
ysis of the [log ki, Ri,πi,Ri, βi, Vi] matrix,16,17 where i (= 1, 2,
3, ... 28) represents the number of probe compounds

log k ¼ � 3:94þ 0:41Rþ 2:30π � 0:51R

� 3:59βþ 6:59V (1)

n ¼ 28, R2 ¼ 0:95, F ¼ 91, Q2
LOO ¼ 0:923

and Q2
LMO25% ¼ 0:908

Equation 1 is the predictivemodel forMWCNT40nm-
COOH adsorption of chemicals and biomolecules, and
the regression coefficients are the nanodescriptors
representing five types of molecular interaction forces
of the nanomaterial.12 The relative strength of the five
nanodescriptors is depicted in Figure 1. The lipophilicity
interaction (v = 6.59) is a strong contributor. Hydrogen-
bond basicity (b = �3.59) is the second significant
factor but has a negative value, which reveals
that the sorbent surface has a weaker tendency to

donate protons (to the probe compounds) than
water at the nano-water interface. Hydrogen-bond
acidity (a = �0.51) has a slight negative value,
indicating the proton acceptor strength of the sor-
bent surface is slightly weaker than water. The third
strong factor was the dipolarity/polarizability (p =
2.30), which is an attribute of the huge π-electron
clouds on the carbon nanotubes.3,18 The lone-pair
electrons (r = 0.41) showed a minimum effect, which
could be due to the fact that the lone-pair electrons
in MWCNT40nm-COOH are shielded inside the π-
electron clouds, resulting in little effect on the
intermolecular adsorption processes. The BSAI ap-
proach not only provides rational interpretations for

Figure 1. Nanodescriptors [r, p, a, b, v] measured by the
BSAI approach represent the five major molecular interac-
tion forces in the nanoparticle adsorption processes: lone-pair
electrons, polarity/polarizability, hydrogen-bond donor,
hydrogen-bond acceptor, and London dispersion, respec-
tively. The nanodescriptors of MWCNT40nm-COOH are
depicted with standard errors of nine replicate measure-
ments. Positive values indicate that the nanoparticle sur-
faces have stronger interaction potentials with the chemi-
cals or biomolecules, while negative values indicate that the
molecular interactions are stronger in the aqueous phase.

Figure 2. Predicted versus measured log k values of the
probe compounds. The predicted log k values were ob-
tained by the nanodescriptors of MWCNT40nm-COOH and
the solute descriptors of the probe compounds via eq 1.
The predicted adsorption coefficients were well-correlated
with the experimentalmeasured valueswithR2 of 0.95 and p<
0.0001. The dashed red lines are the 95% confidence intervals.
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the molecular interactions but also provides five
quantitative physicochemical parameters characterizing
the relative strengths of themolecular interactions of the
nanomaterials in the adsorption processes.
The predicted log k values by the five nanodescrip-

tors for MWCNT40nm-COOH versus the measured log
k values are shown in Figure 2. A linear correlation was
obtained with a correlation coefficient (R2) of 0.95 and
p value <0.0001. The dashed red lines are the 95%
confidence intervals of the predictive model (eq 1) for

MWCNT40nm-COOH. The partial regression plots and
regression residual plot (see Supporting Information
Figures S1 and S2) showed that the regression model
(eq 1) well-described the experimental data.19,20 The
robustness of the model was tested by internal cross-
validation using the leave-one-out (LOO) and leave-
many-out (LMO25%) techniques21,22 with validation
coefficients QLOO

2 of 0.923 and QLMO25%
2 of 0.908, re-

spectively (eq 1). Both of the cross-validation coeffi-
cients were greater than 0.7, revealing the robustness
of the predictive model (see Methods).21 The external
validation of the BSAI approach using 12 different
compounds provided an external validation coefficient
Qext
2 of 0.78 described in our previous report,12 sug-

gesting satisfactory predictivity for external validation
compounds.21,23

The applicability chemical domain of the model
(eq 1) was verified by using Williams plot21 (Figure 3).
If the cross-validated standardized residuals are great-
er than 2.5 times the standard deviation units ((2.5δ,
dashed horizontal lines), the compounds will be trea-
ted as outliers; furthermore, if the leverage of a com-
pound is greater than the warning leverage (h* = 0.64,
dashed vertical line), this suggests that the compound
is too influential to be included in the model.21 The log
k values for all 28 probe compounds were within the
chemical domain (Figure 3), suggesting no outliers and
the model predictivity was reliable.21 It is noted that
the applicable domain of themodel was closely related
to the chemical space of the probe compounds. There-
fore, the probe compounds should be selected to
cover a wide range of physicochemical properties.

Figure 3. Applicable chemical domain depicted byWilliams
plot for the model eq 1. If the cross-validated standardized
residuals are greater than 2.5 times the standard deviation
units ((2.5δ, dashedhorizontal lines), the compoundwill be
treated as outliers; if the leverage of a compound greater
than the warning leverage (h* = 0.64, dashed vertical line),
the compound is too influential to be included in themodel.
The log k values for all 28 probe compounds are all within
the chemical domain, suggesting no outliers and themodel
predictivity is reliable.21

TABLE 1. BSAI Nanodescriptors of Nanomaterials

entry nanomateriala n R2 r p a b v PC-1 PC-2

1 s-MWCNT 28 0.92 0.09 2.34 �0.44 �3.06 5.26 1.14 �0.09
2 C60 (powder) 28 0.91 0.50 �0.75 �1.23 �2.89 2.85 �0.89 �1.93
3 MWCNT-OH 28 0.90 0.70 2.37 �0.28 �2.45 4.63 0.74 �0.74
4 l-MWCNT 28 0.92 �0.15 2.88 �0.47 �2.79 6.63 1.57 0.26
5 MWCNT

8nm-COOH
28 0.93 �0.10 1.85 0.18 �3.23 6.64 1.39 0.86

6 MWCNT
15nm-COOH

28 0.92 0.64 2.68 �0.17 �3.03 5.81 1.51 �0.54

7 MWCNT
40nm-COOH

28 0.95 0.41 2.30 �0.51 �3.59 6.59 1.82 �0.70

8 carbon hollow
sphere

28 0.91 �0.47 3.00 �0.21 �4.07 7.16 2.42 1.00

9 r-graphene oxide 28 0.92 0.68 0.38 �0.79 �1.13 3.05 �1.27 �1.49
10 Ag-silica 22 0.69 �0.99 0.52 0.35 �1.19 0.85 �2.00 2.42
11 Ag-carbon 20 0.74 0.14 0.26 0.21 �1.81 2.02 �1.30 0.52
12 C70TGA 28 0.95 �0.16 �0.59 �1.63 �2.79 1.15 �1.45 �1.39
13 nC60(OH)20 28 0.84 �0.45 0.64 0.32 �3.86 2.49 0.02 1.49
14 nC60(OH)32 28 0.98 0.08 �0.03 �0.66 �3.34 4.57 0.08 �0.60
15 SiO2 26 0.78 0.13 �0.33 �0.27 �1.20 0.78 �2.23 �0.07
16 TiO2 26 0.84 0.10 �0.13 0.57 �1.94 1.39 �1.56 0.99

a The characterization and properties of the nanomaterials are detailed in Supporting Information Table S2. The number of probe compounds (n) used for the multiple linear
regression analysis to obtain five nanodescriptors [r, p, a, b, v] for each of the nanomaterials with a regression coefficient (R2). PC-1 and PC-2 are the two components obtained
in principal component analysis of the five nanodescriptors for two-dimensional presentation of the molecular interaction forces across the 16 nanomaterials.
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The 28 probe compounds are widely used chemicals
for QSAR model development.24�26 Due to the great
varieties of nanomaterials, different sets of probe
compounds may be needed for accurate determina-
tion of the log k values. The measurement accuracy of
the log k values of the probe compounds would
ultimately determine the quality of the nanodescrip-
tors for the nanomaterial.
We have used the approach illustrated above to

measure the nanodescriptors for 16 defined nanoma-
terials used in a number of our research projects. The
properties and characterization of the nanomaterials
are given in the Methods section and Supporting
Information Table S2. The same experimental proto-
cols and probe compounds used for MWCNT40nm-
COOH were used to measure the nanodescriptors for
the 16 nanomaterials listed in Table 1. However, for
some of the nanomaterials, the adsorption of some of
the probe compounds were too weak to be measured
accurately; therefore, these compoundswere excluded
during multiple regression analyses. This lack of ad-
sorption of specific probes is reflective of these nano-
material surface interactions. The number of com-
pounds (n) used in the regression analysis and the R2

value for each of the nanomaterials are given in Table 1.
The nanodescriptors for a given nanomaterial can be
used to construct the predictive model for the nano-
material similar to the predictive model (eq 1) for
MWNCT40nm-COOH using data from entry 7, Table 1.

A fewoxide andmetal nanomaterialswere also included
for diversity, while their nanodescriptor values reflect
larger errors as seen in the low regression R2 values due
to the weak adsorption of the probe compounds on
these nanomaterials. A different set of probe com-
pounds optimized for these metal oxides would need
to be developed for optimal characterization.
The five nanodescriptors defined a five-dimensional

matrix of molecular interaction forces for a given
nanomaterial. One type of molecular interaction could
be a million times stronger than the others; for exam-
ple, the hydrophobicity interaction for MWCNT40nm-
COOH was strong with a v value of 6.59, while its
hydrogen donor interaction was weak with a value of
0.41 (eq 1 and Table 1). On the other hand, one type of
molecular interaction could be weak on one nanoma-
terial but relatively strong for other nanomaterials
depending on the nature of the nanomaterials. The
BSAI approach uses five nanodescriptors in the model
for their clear physicochemical representations and for
the cross comparison among different nanomaterials.
This is different from pure regression model develop-
ment where the weaker variables should be removed
from the regression model.27 However, it should be
noted that the weak nanodescriptors borne larger
errors even though they were not detrimental to the
overall predictive model. The quality of the predictive
model was reflected by the R2 value of the regression
analysis.

Figure 4. Nanoparticle scattering plot by two principal components. The two components were obtained by principal
component analysis of the five nanodescriptors of 16 nanomaterials listed in Table 1. The 16 different nanomaterials were
clustered roughly to three zones by their surface adsorption properties.
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For visual presentation and a clear comparison of
diverse nanomaterials, the five-dimensional informa-
tion can be reduced to two-dimensional via principal
component analysis of the five nanodescriptors. The
principal component analysis was performed to ortho-
gonally transform the five-dimensional data set to two
principal components, with the first principal compo-
nent accounting for as much of the variability in the
data as possible and the second component explaining
the highest variance possible under the constraint that
it be orthogonal to the first component.28 The two
components generated through principal component
analysis of the nanodescriptors of the 16 nanomaterials
are listed in the last two columns in Table 1. A two-
dimensional plot of the two principal components (CP-
1 versus CP-2) is shown in Figure 4. The 16 nanomater-
ials can be roughly clustered as strong adsorption
nanomaterials including carbon hollow spheres, car-
bon nanotubes and their derivatives, medium adsorp-
tion nanomaterials including C60 (powder), polar
derivative of fullerenes and graphene oxides, andweak
adsorption nanomaterials including oxide and metal
nanoparticles. This two-component reduction of the
five descriptor index provides a simpler characteriza-
tion of nanomaterial surface properties, which may be
useful for the categorization of biological effects based
on surface properties.
The values of nanodescriptors are derived based on

the weight of the nanomaterials. Therefore, they can
directly correlate with the biological activity in weight-
based dose quantities. This overcomes the difficulties
in measuring surface area of nanomaterials under
biological conditions. In fact, the surface area mea-
sured using the conventional BET method29 could lose
its physical meaning in biological conditions due to
agglomeration and aggregation of nanomaterials in
biological conditions.30,31 For example, C60 (powder) is
composed of pristine fullerenes in powder form while
it is located in the polar derivative zone. This is because
C60 (powder) was in the form of large crystals with
surface area significantly smaller than molecular C60;
therefore, its adsorption energy was significantly re-
duced. In fact, the BSAI nanodescriptors reflect the real
aggregation state of the measurement in the solution,
not the conceptual size or particle sizes in purified
forms before dose preparation. This has a significant
advantage in predicting effects under in situ biological
conditions.
The direct and simplest application of the BSAI

nanodescriptors is to predict the adsorption of small
molecules onto the surfaces of nanoparticles. We have
demonstrated in our prior report12 that the measured
affinity coefficients (log Kf) of polycyclic aromatic hy-
drocarbons onto MWCNT32 were well-correlated with
the predicted log k values using the BSAI model with a
correlation coefficient R2 of 0.99, and the correlation of
the log Kf values of synthetic organic compounds onto

single-walled carbon nanotubes33 with the predicted
log k values provided R2 of 0.86. However, there is
limited quantitative data of biological activities avail-
able for development of such correlations or predictive
models, relating surface properties described by the
BSAI index to more complex interactions, including
aggregation and protein adsorption of nanomaterials
in biological systems. We envision the BSAI descriptors
to be used as a multivariate index of potential biologi-
cal interactions, much as the log octanol/water parti-
tion coefficient is used for small organics. We present
the BSAI data in this report to facilitate development of
such models.
Another potential application of the nanodescrip-

tors is to define the toxicity thresholds of nanomater-
ials. The strong adsorption of proteins onto the
nanomaterial surfaces could result in irreversible ad-
sorption. This could lead to the formation of a biocom-
patible coating making the nanomaterial nontoxic in
biological systems. Carbon nanomaterials (carbon na-
notubes and hollow spheres) have very hydrophobic
surface (v term >5, Table 1); irreversible adsorption
with proteins is postulated by the BSAI characterization
data, which could render such carbon nanomaterials
nontoxic in biological systems. This prediction calls for
clarification of some toxicity studies of carbon nano-
materials to identify the true cause for observed toxi-
cities reported in the literature; for example, the
toxicity from leached metal ions would not attribute
to the carbon nanomaterial itself.34�36 On the other
hand, binding of certain proteins, such as complement
factors, to the surface of carbon nanomaterials could
also lead to adverse immunological effects.37 The
adsorption of proteins could lead to protein changes
in higher degrees such as conformation, unfolding, or
new epitopes,6 which could cause new biological
consequences. Clearly, then, there is a need for a
rational approach to predict such events.
It also worthy to note that hydroxyl and carboxyl

derivatization of MWCNTs significantly increased its
suspension stability in aqueous media, while their
surface adsorption property was not significantly al-
tered. This could be due to the fact that the main polar
derivatization sites occurred at the ends of MWCNT
while the adsorption property of tube surfaces was not
significantly altered. Therefore, carbon nanotubes may
be envisioned as drug carriers via tube surface adsorp-
tion of the drugs.38 This also explains one of the
differences between carbon nanotubes and asbestos,
which has hydrophilic surfaces that could not form a
strong adsorbed protein layer.39�42

It is crucial to define the threshold of how strong the
nanoparticle adsorption of proteins could occur rever-
sibly, particularly, when the released proteins are
denatured at the adsorption sites. The site-denatured
proteins could lose their biological function or acquire
unwanted functions.43�45 Indeed, a recent study has
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demonstrated gold-nanoparticle-induced unfolding of
fibrinogen resulting in pro-inflammatory effects in an
in vitro model.46 The BSAI nanodescriptors represent-
ing the adsorption forces could be used to define such
adsorption criteria for toxicity assessment and safety
evaluation of nanomaterials.
The characterization of nanomaterials as they actu-

ally exist in the biological milieu is complicated by
complex adsorption of proteins and other biomole-
cules onto the external surfaces of the nanomateri-
als.1,47 In the recently developed nanoparticle�protein
corona concept, it was argued that nanoparticles
are always coated with proteins and other biomol-
ecules.6�8 The strongly adsorbed protein on the nano-
particles forms a “hard” corona with a relatively stable
protein layer, while the weakly adsorbed the protein
forms a “soft” corona that dynamically exchanges
with those in thebiologicalmilieu.48 It is thenanoparticle�
protein corona that represents the biological identity
of the nanomaterial rather than the nanomaterial
itself.1 This concept has been widely accepted in
the field of bionanoscience, but it is not clear which
factors govern the adsorption affinity or selectivity
of proteins in the corona formation process. Also, it is
not known which factors govern the exchange of
the corona proteins with those in the media. If the
adsorption forces of the nanomaterials ultimately
govern the affinity and selectivity of proteins, the
quantitative BSAI nanodescriptors representing the
adsorption forces of nanoparticles can be used to predict
the protein affinity and selectivity in a corona formation
process. The application of the BSAI nanodescriptors
measured using small probe molecules for affinity pre-
diction of proteins is based on the intrinsic nature of free
energy related properties. However, the free energy
related quantities only describe the thermodynamic
contribution of the adsorption driving forces; the
adsorption kinetics or mechanisms cannot be
described by the nanodescriptors. Particularly,
the higher degree changes in proteins such as

conformation, unfolding, or new epitopes in the
corona formation process are not reflected by the
thermodynamic parameters, which should be a sub-
ject for the new emerging bionanoscience.46,49

Nanomaterials have multiple dimensional physico-
chemical properties including particle size, shape, sur-
face charge, surface chemistry, core material composition,
crystallinity, and structure. The diversity of these prop-
erties forms a virtual unlimited number of types of
nanomaterials that could be constructed. Each of the
nanomaterials could have complicated interactions
with proteins and other biomolecules. When faced
with such an infinite nanomaterial matrix, a strategic
question is how much information is required to de-
scribe behavior the nanomaterials in biological
systems.1�3,50 As seen in the two-dimensional princi-
pal component reduction of the BSAI index values,
clustering of diverse nanomaterials is possible based
on surface adsorption properties.
We have postulated that the surface adsorption

energy is the primary driving forces behind all of these
complicated interactions and dynamic changes of
nanomaterials in biological systems. The surface ad-
sorption characteristics of nanomaterials should be
one of the basic properties in nanomaterial character-
ization in addition to the characterization of the
physical properties (particle size, size distribution,
shape, surface area, etc.) and biochemical properties
(specific antibody and antigen interactions, specific
chemical interactions, oxidative reduction, complex-
ion coordination, etc.). Moreover, the surface adsorp-
tion forces of nanomaterials govern the absorption,
disposition, metabolism, excretion, and pharmacoki-
netic properties of nanomaterials in nanomedicine
applications.51�53 This is the first success in quantita-
tive characterization of the surface adsorption forces
of nanomaterials in biological conditions, which could
open a quantitative avenue in predictive nanomedi-
cine development, risk assessment, and safety evalua-
tion of nanomaterials.

METHODS
The nanomaterials were used in our research projects, short

MWCNT (s-MWCNT) with a length of 2 μm and long MWCNT
(l-MWCNT) with a length of 50 μm, were nonderivatized nano-
materials. Carboxylated MWCNTs with different diameters (<8,
10�20, and 30�50 nm) are labeled as MWCNT8nm-COOH,
MWCNT15nm-COOH, and MWCNT40nm-COOH, respectively.
MWCNT-OH was a hydroxylated MWCNT with a diameter of
8�15 nm. C60 (powder) was pristine fullerene fine powder
supplied from the manufacturer. C70-TGA was a fullerene
derivative with three tetraglycolic acids (TGA) on each end of
the C70-buckyball. nC60(OH)20 and nC60(OH)32 were in-house
(North Carolina State University) prepared nC60 nanoparticles
with different amounts of hydroxyl groups on the surface
fullerenes. Carbon hollow sphere and reduced graphene
oxides (r-graphene oxide) were prepared at the University of
Cologne. Silica-coated silver (Ag-Silica) and carbon-coated silver

(Ag-carbon) nanoparticles were synthesized by NanoComposix.
The oxide nanoparticles (TiO2 and SiO2) were purchased from
SigmaAldrich. The properties and suppliers of the nanomater-
ials are listed in Supporting Information Table S2.
The adsorption coefficients of the probe compounds were

measured using a solid phase microextraction (SPME) and gas
chromatography with mass spectrometry (GC/MS) method. A
given quantity of nanomaterial (e.g., 2.00 mg of MWCNT40nm-
COOH) was weighed into 2 mL vials filled with 200 μL of
deionized water. The nanomaterial in water was dispersed in
a sonicator bath for 5 min. After sonication, a standard solution
(1.00mL) containing the probe compounds of interest in 12mM
phosphate buffer (pH 7.4) wasmeasured into the vials that were
sealed immediately with a Teflon-lined septa cap to reduce
evaporation loss of the probe compounds. The adsorption was
conducted by shaking the vials containing nanomaterials in the
solution of probe compounds on a rotary shaker for 5 h for
equilibrium adsorption or different time intervals for kinetic
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experiments. The vials were then placed on the sample holder
of the autosampler for direct SPME-GC/MS analysis. The SPME
technique has high analytical sensitivity; it measures the free
concentrations of the probe compounds in the solutionwithout
disturbing the adsorption equilibrium, nor the need to separate
the nanoparticles from the solution, which is the most difficult
step in nanoparticle adsorption of small molecules. The GC/MS
method offers a high separation power; multiple chemical
compounds can be chromatographically separated and quan-
titated simultaneously,54 which is particularly useful for mimick-
ing the competitive adsorption of biomolecules. The robotic
automatic sample analysis enables high-throughput generation
of the quantitative data.
For quantitative analysis of the 28 probe compounds, poly-

dimethylsiloxane/divinylbenzene (PDMS/DVB) membrane-coated
fibers showed an optimal performance. Only parts per billion
levels of the probe compounds (individual concentrations)
were required because of the high analytical sensitivity of the
SPME-GC/MS method.12 The equilibrium concentration (Ce) of
the probe compounds in the solution were determined in the
quantitative analysis. The adsorption amounts (ne) of the probe
compounds by the nanoparticles were obtained by subtracting
the quantities remaining in the solution from the dosed
amounts in the standard solution (ne = V0C0 � VeCe), where
C0 is the standard concentration of a probe compound and V0 is
the volume. The surface concentration (Cad) of the probe com-
pound adsorbed on the nanoparticle surfaces is calculated from
the adsorption amount (ne) and the mass (m) of the nanoma-
terial in the testing solution (Cad = ne/m). The adsorption
constant (k) of a given probe compound is the ratio of surface
concentration (Cad) versus the equilibrium concentration (Ce)
in the solution

k ¼ Cad
Ce

¼ V0C0 � VeCe
mCe

(2)

The nanodescriptors for a given nanomaterial were obtained
by multiple linear regression analysis of the [log k, R, π, R, β, V]
matrix via eq 1. The log k valuesweremeasured via the adsorption
experiments, and the solute descriptors were provided by the
Absolv program in ADME Suite software (Advanced Chemistry
Development Inc., Toronto, Canada). An example of the [log k, R,π,
R,β,V]matrix forMWCNT40nm-COOH isgiven in Supporting Infor-
mation Table S1. The regression analysis was performed by using
the Analyst program in SAS software (SAS Institute Inc., Cary, NC).
The robustness of the model (eq 1) was studied by internal

cross-validation using the leave-one-out (LOO) and leave-many
(25% of the data)-out (LMO25%) techniques. The validation
coefficients (QLOO

2 ) < 0.7 indicate models with low robustness
and low internal predictive ability; QLMO25%

2 is a stronger cross-
validation coefficient than QLOO

2 .21 The applicability domain of
the predictive models was verified by the leverage approach
using a Williams plot, the leverages of the chemicals (diagonal
elements of theHatmatrix) versus the Euclideandistances of the
compounds to the models measured by the jackknifed
(standardized and cross-validated) residuals.21,23 If the jack-
knifed residual of a compound is greater than 2.5 times the
standard deviation units ((2.5σ), the compound will be treated
as outliers. If the leverage of the compound is greater than the
warning leverage (h > h*), it suggests that the compound is very
influential on themodel. Thewarning leverage is defined as h* =
3 (N þ 1)/n, where N is the number of independent variables in
the predictivemodel (N=5 in eq 1) and n is the number of probe
compounds (n = 28 in this study).
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